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Abstract— Robust and dependable Simultaneous Localization
and Mapping (SLAM) systems are essential for critical ap-
plications in fields such as mobile robotics and autonomous
vehicles. Recent years have seen considerable progress in
SLAM technology that utilizes RGB data. While many studies
have enhanced the capabilities of RGB-based SLAM through
advanced learning techniques and innovative optimization
methods, a consistent decline in SLAM efficacy under varied
conditions remains a challenge. Moreover, there is a notable
lack of comprehensive datasets that encompass a range of
environments, which are vital for evaluating and improving the
robustness of SLAM systems. Our extensive experimental work
has shown that our framework effectively assesses and refines
the performance of Deep-learning based Visual Odometry (VO)
systems. In this project, the contribution can be concluded as:
(1) we generate a KITTI-formatted virtual dataset for data
augmentation towards robust learning for VO system(dataset
can be accessed at: https://drive.google.com/drive
/folders/1GWec_3JzKqdBCun9hw0ZAAk10-ay9vUNK?u
sp=drive_link). (2) we propose an evaluation framework
that systematically examines the robustness of the DeepVO
performance. (3) we implement a novel inpainting modules
to address the dynamic objects issues for a leaning-based VO
system. Our code for the framework is publicly accessible at
https://github.com/IlikeSukiyaki/Enhanced-Lea
ning-based-Visual-Odometry.git.

I. INTRODUCTION

The growing use of mobile robots in dynamic and complex
settings, referred to as “noisy worlds,” underscores the criti-
cal need for improved robustness in robotic technologies to
ensure consistent functionality amidst disruptions. This has
made the assessment of robustness an increasingly important
focus in robotics research [1], [2]. Central to this area of
study is Simultaneous Localization and Mapping (SLAM),
which is fundamental to robotic autonomy [3], [4]. The
main challenge involves developing a robust and detailed
framework for evaluating the resilience of SLAM systems to
various disturbances.

Recent advances in this field have primarily focused on
assembling demanding datasets that expose SLAM sys-
tems to adverse environmental conditions, enhancing our
understanding of their limitations in practical environments
[5]-[8]. However, the complexities of data collection and
annotation in natural environments limit the size and scope
of these datasets, constraining a comprehensive evaluation.
Additionally, the intricate interplay of environmental factors
makes it difficult to isolate the impact of specific distur-
bances on SLAM performance. In response, simulation-
based benchmarks have emerged as an effective alternative
[9]-[13]. These simulations offer an environment for endless
’battlefields,” where the scalability and diversity of data

(d) CARLA Simulation Dataset for the 75% fog Scenes

Fig. 1. CARLA Dataset Synthesis for Various Weather Conditions

improve the ’survival testing’ for SLAM models. They also
facilitate the creation of tailored and increasingly challeng-
ing scenarios, contributing to continuous enhancements in
SLAM robustness [12]. While current simulation technolo-
gies may not perfectly replicate real-world conditions, ongo-
ing improvements in visual content synthesis are gradually
closing this fidelity gap [14], [15].

In our research, we introduce a novel simulation frame-
work designed to replicate a wide array of environmental
challenges, including adverse weather conditions like rain
and fog, thus advancing the evaluation and development
of SLAM systems. This framework utilizes dynamic sim-
ulations combined with generative inpainting techniques to
tackle challenges associated with occlusions and the presence
of dynamic objects. Such simulations are crucial for evaluat-



(d) Feature extraction in the fog condition

Fig. 2. Feature Extraction from CARLA Synthetic Dataset

ing SLAM performance in scenarios where traditional static
mapping approaches are ineffective due to rapid environ-
mental shifts. In summary, this work delivers the following
significant contributions:

o Generate Kitti-formatted virtual dataset for data aug-
mentation

¢ Propose Evaluation Framework to examine robustness
of DeepVO Performance

o Implement Novel impainting module to address dy-
namic objects issues for learning based VO systems.

By sharing the code to research community we hope to
enable more research along these lines. Finally using our
evaluation framework can be used with nuscenes data by
converting to SemanticKitti[]

II. RELATED WORK

A. Supervised Learning of Visual Odometry

Supervised learning approaches in visual odometry (VO)
focus on training a deep neural network (DNN) using
labeled datasets to map consecutive image pairs to their
respective motion transformations. This method contrasts
with traditional VO techniques, which rely on analyzing the
geometric properties of images. Typically, the DNN receives

two sequential images as input and outputs the calculated
translation and rotation between these image frames [17].

Early contributions in this field include the work by
Konda et al. [18], which treats visual odometry (VO) as
a classification task. In their model, a convolutional neural
network (ConvNet) is employed to deduce discrete shifts in
direction and velocity based on the input imagery. However,
this approach is constrained by its reliance on discrete
motion predictions and its inability to accurately delineate
the complete camera trajectory. Addressing these limita-
tions, Costante et al. [19] advanced this field by integrating
dense optical flow for feature extraction and a ConvNet
for assessing the motion between successive frames. Their
methodology offers enhanced accuracy and smoother camera
trajectories compared to the earlier work by Konda et al. [18].
Despite these advancements, both techniques stop short of
providing a fully integrated end-to-end learning model from
images to motion predictions and continue to underperform
compared to traditional VO algorithms, such as VISO2 [20],
especially in terms of accuracy and reliability. Moreover,
both methods lack in exploiting the comprehensive geometric
data inherent in the images, which is vital for precise motion
detection. The training and evaluation datasets used also
lack diversity, which may compromise their effectiveness in
varied settings.

DeepVO [16] facilitates end-to-end learning in visual
odometry by employing a synergistic approach that integrates
a convolutional neural network (ConvNet) with a recurrent
neural network (RNN). As illustrated in Figure 4, this con-
ventional RNN+ConvNet based VO model captures visual
features from image pairs using a ConvNet and leverages
RNNSs to manage the temporal association of these features.
The architecture of its ConvNet encoder draws on the [21]
design, which is optimized for extracting visual features
critical for optical flow and autonomous motion determi-
nation. The recurrent component of the model consolidates
historical data within its hidden states, allowing the system to
generate outputs that reflect both prior knowledge and recent
observations from ConvNet features. DeepVO is trained
using datasets that include precisely verified poses to serve
as training labels.

B. Hybrid Visual Odometry

In contrast to end-to-end models that depend exclusively
on deep neural networks for pose interpretation from data,
hybrid models merge traditional geometric approaches with
deep learning techniques. These models employ deep neural
networks to enhance parts of geometric models, offering
more sophisticated representations. A prominent challenge
in conventional monocular visual odometry (VO) is the issue
of scale ambiguity, wherein monocular VOs are restricted to
estimating relative scale only. This limitation becomes criti-
cal in scenarios demanding absolute scale measurements. A
viable solution to this problem involves incorporating learned
depth estimates into traditional visual odometry frameworks
to facilitate the recovery of absolute scale metrics for poses.
Depth estimation has long been a focal area of research
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Fig. 3. Architecture of the proposed RCNN based monocular VO system. [16]

in computer vision, with numerous strategies proposed to
address this challenge. For example, Godard et al. [22] have
developed a deep neural architecture capable of predicting
per-pixel depths on an absolute scale.

In the study by [23], a convolutional neural network
(ConvNet) generates initial coarse depth estimates from raw
images, which are subsequently refined using conditional
random fields. The scale factor is determined by correlating
these depth predictions with observed point positions. Once
this factor is established, the calculated scale is applied to
the estimated translations from a monocular visual odometry
(VO) algorithm to produce ego-motions with absolute scale,
thereby addressing the scale ambiguity issue through the in-
tegration of depth data. Further advancements are reported in
[24], which introduces the use of predicted ephemeral masks
(areas representing moving objects) alongside depth maps
within a traditional VO framework to enhance its resilience
to dynamic objects. This technique allows for the generation
of metric-scale pose estimations using a single camera, even
in instances where dynamic objects obscure large areas of
the image. Additionally, [24] suggests combining classical
VO with learned pose corrections to significantly reduce
error drifts found in traditional VOs. Unlike purely learning-
based VO systems that regress inter-frame pose changes
directly, this approach adjusts pose based on regressions from
data, eliminating the requirement for pose ground truth in
training. Similarly, [25] enhances classical monocular VO
with learned depth estimates, introducing a depth estimation
module that operates in two distinct modes to support lo-
calization and mapping. This approach demonstrates a high
level of adaptability to various environments, surpassing
other learning-based VOs. Moreover, [23] integrates learned
depth and optical flow predictions into a conventional VO
framework. This method utilizes optical flow and single-
view depth outputs from deep ConvNets to establish 2D-2D
and 3D-2D correspondences, with consistent scale depth esti-
mates helping to alleviate scale drift challenges in monocular
VO/SLAM systems. By fusing deep learning predictions with
geometric-based techniques, these studies illustrate how deep

VO models can enhance traditional VO/SLAM systems.

In summary, hybrid models that incorporate geometric
or physical priors alongside deep learning strategies typi-
cally surpass the accuracy of end-to-end VO/SLAM systems
and often exceed the performance of traditional monocu-
lar VO systems in standard benchmarks. These geometry-
based models enhance VO/SLAM frameworks by integrating
deep neural networks to refine depth and egomotion pre-
dictions, and to bolster resilience against dynamic entities.
Additionally, models that utilize physical motion principles
merge deep learning with established motion models, such
as Kalman or particle filters, to seamlessly incorporate these
traditional motion models into the learning algorithms of
VO/SLAM systems. The advantages of melding geometric
or physical priors with advanced learning techniques gen-
erally result in hybrid models achieving superior precision
compared to end-to-end VO systems, as documented in
Table II. It is noteworthy that recent hybrid models have
not only advanced rapidly but also outperformed several
well-known conventional monocular VO systems in prevalent
benchmarks [26], underscoring swift progress in this field.

C. Robustness Benchmark

To guarantee the dependable operation of mobile robots,
their perception systems are required to be robust against
natural distribution shifts [27]. A foundational benchmark
for this purpose, ImageNet-C [28], was established to rigor-
ously assess the robustness of image classification techniques
against various common image corruptions and disturbances.
Building on this foundation, further research has broad-
ened the examination to cover additional perception tasks
such as object detection [29]-[31], segmentation [32]-[34],
and embodied navigation [11], [35]. These investigations
highlight the critical importance of testing the corruption
resilience of models. Within the realm of SLAM, the chal-
lenges are not only confined to image-level corruptions, such
as those resulting from camera failures, but also include
managing dynamic sensor corruption and shifts in sensor
transformations over time. These variations typically stem
from environmental changes that occur over time and the



varied movements of robots. In our research, we introduce
a perturbation taxonomy specifically designed for RGBD
SLAM operating in dynamic environments (e.g., changing
light conditions) and unstructured settings (e.g., rough ter-
rains that may induce vibrations in mobile robots).

D. Robustness Evaluation for SLAM

The reliability and accuracy of SLAM systems in dynamic
and complex real-world settings are crucial, necessitating
robust systems capable of enduring sensor malfunctions
and sustaining long-term performance [3]. To assess the
robustness of SLAM models effectively, various datasets
have been compiled in challenging conditions featuring dis-
turbances such as low light or motion blur [2], [7], [8],
[36], [37]. Additionally, SLAMBench [38] evaluates the
performance of multiple traditional SLAM models against
these tough datasets, highlighting their susceptibilities. Given
the logistical and scalability challenges of developing real-
world datasets through robotic platforms for SLAM, Wang
et al. [39] have pioneered the creation of a simulated SLAM
benchmark known as TartanAir using photo-realistic simula-
tion environments, designed specifically for robustness test-
ing. In our research, we broaden the evaluation framework to
include the robustness of multi-modal SLAM models, cover-
ing both traditional and neural SLAM approaches, against a
wider range of sensor corruptions and motion variables (e.g.,
changes in speed and motion-induced deviations in sensor
trajectories).

III. METHODOLOGY
A. Evaluation Pipeline

Our primary objective is to generate a challenging image
sequence capable of capturing and replicating extreme real-
world scenarios. Figure 4 illustrates the overall workflow of
our methodology. We can incorporate simulator data gener-
ated by CARLA Simulator [10] as well as real-world data
obtained from videos. Since arbitrary real-world video se-
quences lack ground truth camera pose, we employ Colmap
for structure-from-motion [40] with loop closure to estimate
a reliable camera trajectory, serving as the ground truth
trajectory. Subsequently, various types of noise, such as rain,
fog, and dynamic objects, are introduced into the image
sequence to heighten the level of difficulty. Optionally, a
generative inpainting method may be applied to enhance
SLAM performance when dynamic objects are present;
further details are discussed in Section III-B. Finally, we
employ DeepVO with incorporated dataset for training, to
estimate the trajectory and calculate errors using the Absolute
Trajectory Error (ATE).

B. Generative inpainting for dynamic objects

Our experimental findings, as detailed in Section IV and
supported by literature in [41], demonstrate that dynamic
objects in unpredictable environments significantly challenge
current SLAM models. Traditional SLAM algorithms are
predicated on the creation of maps from static environments
with immobile objects, which is essential for precise robot

localization and map updates. Yet, dynamic objects disrupt
these foundational assumptions by introducing significant
variability. Specifically, observations can differ dramatically
from one frame to the next, as dynamic objects shift po-
sitions, complicating the task of matching features across
frames due to these inconsistent observations.

The DynaSLAM framework, proposed in [41], effectively
mitigates issues posed by dynamic objects. This method inte-
grates the advanced Mask R-CNN model [42] to first identify
dynamic objects such as humans and vehicles. Leveraging
the binary masks produced by Mask R-CNN, the SLAM
algorithms then exclude features within the masked regions
from consideration. To bolster the system’s robustness, areas
obscured by dynamic objects and visible in previous frames
are reconstructed using the ground truth static background,
reprojected to align with the current camera view. This
process of replacing dynamic elements with static images
aids in maintaining consistent feature detection and improves
the resilience of the algorithm.

Nevertheless, this framework has limitations, especially
in scenarios where the background is consistently obscured,
such as in dense traffic conditions where the background
behind a continuous flow of moving vehicles remains un-
seen. Large sections of the background thus get excluded,
reducing the potential for feature detection and matching.
To address this gap, we suggest an enhancement using
generative inpainting. This adaptation enables the model to
hypothesize the background behind dynamic objects when
actual background data is lacking.

For implementing this solution, we utilize a similar Mask
R-CNN model as employed in YOLOvS [43], coupled with
the LaMa inpainting model [44] for background prediction
(alternative inpainting models are explored in IV).

LaMa demonstrates robustness and a strong ability to
generalize by effectively encoding both global and local
contexts, facilitated by its extensive receptive fields. This
capability is largely due to the utilization of Fast Fourier
Convolution (FFC) [45], which incorporates the Fast Fourier
Transform (FFT) in the initial stages to preserve global
context. In the FFC process, we observe that

1) apply Real FFT2d to the input tensor (image + mask)
Real FFT2d : RP*WxC _y cHx5xC

2) combine the real and imaginary parts
ComplexToReal : CH* TxC _, RHxFx2C

3) frequency domain convolution

ReLU 0 BN o Convyy : RE*TXC _ RHx 5 x2C

4) apply inverse transform to recover a spatial structure

RealToComplex : RH* Fx2C _, cHxFxC

Inverse Real FFT?2d : (CHX%/'XC — RHXWx2C

In the final stage of the proposed framework, the LaMa
(Large Mask Inpainting) model significantly enhances the



monocular input images mask RCNN backbone

[Fge -

- > > >

> > = > =

KITTI Real Data Stage

~ Inpainting Modules

Fig. 4. Architecture of the RCNN based monocular VO system combined with the inpainting modules. [16]

Fig. 5. Generative inpainting model LaMa is able to take in RGB image and
the binary mask of target inpainting area to paint the inferred background

quality of the generated backgrounds for masked regions
by effectively integrating global and local contextual infor-
mation. To capture the global context, LaMa employs Fast
Fourier Convolution (FFC) [45], which incorporates the Fast
Fourier Transform (FFT) in the initial stages. This ensures
that the generated background is coherent and consistent
with the overall structure and layout of the scene, preventing
abrupt or unrealistic changes. Simultaneously, LaMa utilizes
traditional convolution techniques to obtain local contextual
information from the regions surrounding the masked areas.
This enables the generation of backgrounds with realistic
textures, patterns, and details that seamlessly blend with
the adjacent areas. The combination of global and local
contexts empowers LaMa to generate visually coherent and
convincing background inpainting results, effectively filling
in the masked regions while preserving the overall structure
and details of the scene. This robust background inpainting
capability significantly contributes to the resilience of the
proposed monocular visual odometry system, enabling reli-
able operation in challenging real-world environments.

IV. EXPERIMENTS

A. Experiment Setup

The monocular VO model utilizes a deep Recurrent
Convolutional Neural Network (RCNN), streamlining input
video by standardizing image sequences and feeding them
into a ConvNet inspired by FlowNet architecture, optimized
to detect fine features. The processed data is then analyzed
by a dual LSTM network within the RNN stage, which
interprets both recent and historical information to determine
object poses.

To tackle the issue of vanishing or exploding gradients
that RNNs typically face, the model integrates LSTM nodes
that maintain the efficacy of the gradient through depth and
time via three specialized gates. This enables the capture
of complex dynamic patterns essential for visual odometry.
Furthermore, bidirectional LSTMs are incorporated to im-
prove accuracy by considering information from both past
and future timeframes, although this demands additional
computational power. This approach aims to address some
limitations associated with a monocular viewpoint, expand-
ing the potential for more robust visual odometry.

The experimental setup also involved training and testing
on both real-world and synthetic datasets. For the real-world
data, the KITTI dataset, which includes 10 sequences with
pose ground truth, was used: sequences 00 to 08 for training
and sequences 09 to 10 for testing. A synthetic dataset,
created to simulate various weather conditions, consisted of
630 frames; 500 frames were designated for training and the
remaining 130 for testing. The models were trained with the
Adagrad optimizer with a learning rate of 0.0005. For feature
extraction in the ConvNet, a pretrained FlowNet was utilized,
which is indicative of leveraging existing architectures for
improved feature extraction in complex tasks like VO.



Fig. 6. Qualitative comparison among inpainting models reveals that LaMa (top-left) outperforms all other models, including MIGAN (top-right), MAT
(bottom-left), and LDM (bottom-right), by generating fewer artifacts. The ground truth image is identical to that shown in 5

TABLE I
ABSOLUTE TRAJECTORY ERROR FOR CARLA SYNTHETIC DATASET

Sequences Rotational RMSE  Translational RMSE
Clean Dataset 7.593 4.158
Rain 25% 9.825 10.067
Rain 50% 10.365 16.327
Rain 75% 20.066 15.553
Fog 25% 60.717 26.357
Fog 50% 79.027 42.327
Fog 75% 85.342 66.743
Traffic Flow 8.664 11.527

B. Experimental Results

Camera Trajectory Evaluation under Disturbances:
As shown in the KITTI dataset trajectories in Figure 7,
Robust DeepVO generally adheres closer to the ground
truth compared to DeepVO, especially in complex sequences
like 00, 07, and 09. Sequence 00’s intricate path shows
Robust DeepVO’s better alignment despite environmental
complexities, while DeepVO diverges more noticeably. In
extended paths such as Sequence 01, Robust DeepVO in-
dicates superior error management over distance. Sequence
03’s performance suggests Robust DeepVO’s adeptness at
sequential frame processing.

Sequence 07 demonstrates both algorithms’ struggle with
complexity, yet Robust DeepVO shows better recovery to-
ward the sequence’s end. The complexity of Sequence 09 il-
lustrates Robust DeepVO’s ability to approximate the ground
truth more closely, highlighting its resilience. In Sequence
10, both algorithms start off similarly, but Robust DeepVO
pulls ahead with greater accuracy in the latter half.

Overall, Robust DeepVO exhibits a trend of more accurate
and resilient trajectory tracking across various environmental
conditions, indicating advanced algorithmic capabilities in
handling complex routes and dynamic changes.

Robustness Evaluation Metrics: For quantitative analysis
of the methods in this experiment, the error metric we adopt
is the absolute trajectory error (ATE) proposed by Sturm et
al. [46]. Using the sequences of estimated trajectory P;., and
ground truth trajectory Qi.,, the ATE at a certain time step
i can be computed as:

E;=Q; 'SP,

where S is a rigid body transformation matrix that maps
the estimated trajectory onto the ground truth trajectory. The

rooted mean squared error (RMSE) over all time indices is
computed as:

1 n
RMSE (Ei,) = (; ) |[trans(E;)|[*)"/?
i=1

Qualitative Analysis: The performance of the Robust
DeepVO visual odometry system is analyzed under fog and
rain conditions using the CARLA synthetic dataset. The
system’s adaptability to environmental conditions is critical
for autonomous navigation, as evidenced by the trajectories
plotted against the ground truth.

In Figure 8(a), which displays performance in fog, the
trajectory remains close to the ground truth at the lowest
density of 25. At fog densities of 50 and 75, the deviation
from the ground truth increases progressively, with the den-
sity of 75 leading to the largest discrepancies. This pattern
indicates a deterioration in the system’s ability to localize as
conditions become less visually clear, suggesting that visual
feature extraction and sensor performance are hampered by
higher fog densities.

Figure 8(b) illustrates performance in rain conditions. Here
again, the system accurately follows the ground truth in the
absence of rain. However, as the rain density escalates to 25,
and further to 50 and 75, we witness a parallel escalation in
trajectory deviation. The highest rain density of 75 exhibits
the most substantial deviation, signifying that the system’s
performance is notably impacted by heavy rain, likely due
to the impairment of visual cues and sensor noise.

Overall, the Robust DeepVO system shows resilience
to low-density environmental changes but struggles under
higher density conditions of both fog and rain. The perfor-
mance under high-density conditions underscores the need
for the system to incorporate more sophisticated means of
handling adverse weather, possibly through enhanced sensor
fusion or more advanced feature detection that is less affected
by visual impediments. These improvements are critical for
the system’s utility in real-world autonomous navigation
where variable weather is a common challenge. Quantitative
Analysis: The data in Table I reflect that the visual odometry
system maintains high precision under clear conditions and
experiences a deterioration in accuracy as environmental
complexity increases due to weather factors. There is a
notable trend where errors in both rotation and translation
incrementally escalate with rising densities of rain and fog,
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suggesting that adverse weather significantly challenges the
system’s sensory and processing capabilities.

For the real-world KITTI dataset in Table II, the system’s
performance exhibits variability across different sequences,
which may be attributed to the varying complexities and
characteristics inherent to each real-world scenario. This sug-
gests that while the system is capable of handling real-world
environments to a degree, its robustness is influenced by the
specific dynamics and environmental features encountered in

Real-World KITTI Dataset Trajectory: Sequence 01
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each sequence.

Generative inpainting model. we conduct comparative
analyses of the state-of-the-art generative inpainting models.
We include LaMa, MAT [47], MIGAN [48], and LDM [49]
in our comparison. These models are showcased in Fig. 6,
where each is assessed for its ability to seamlessly inpainting
images. This comparison helps in identifying which model
performs best under various conditions and contributes to
advancements in the field of Visual Odometry.
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Comparison of Robust DeepVO Performance on Clean and Rain datasets

ABSOLUTE TRAJECTORY ERROR FOR REAL-WORLD KITTI DATASET

Sequences Rotational RMSE  Translational RMSE
Sequence 00 13.989 14.693
Sequence 01 13.162 25.454
Sequence 02 17.928 9.127
Sequence 03 11.525 10.327
Sequence 04 29.625 15.953
Sequence 05 13.552 8.240
Sequence 06 44.263 11.449
Sequence 07 25.193 26.327
Sequence 08 22.645 75.923
Sequence 09 33.715 55.210
Sequence 10 6.224 7.015

V. CONCLUSION

In conclusion, this project introduces a novel and compre-
hensive framework that combines deep learning techniques
with traditional geometric methods to significantly enhance
the robustness and performance of monocular visual odom-
etry systems in complex, dynamic real-world environments.
The key contributions include: (1) KITTI-inspired simulation
pipeline that generates diverse synthetic datasets for effective
training and evaluation of the proposed models. (2) Inte-
gration of the Mask R-CNN model and LaMa inpainting
algorithm for robust handling of dynamic objects and oc-
clusions. (3) Utilization of generative inpainting techniques,
such as Fast Fourier Convolutions, to preserve global context
and ensure consistent scene representation. Extensive exper-
iments on both synthetic and real-world datasets demon-
strate the superior performance of the proposed system in
terms of camera trajectory tracking accuracy and resilience,
particularly in challenging scenarios with dynamic objects
and occlusions. The modular architecture allows for future
enhancements and integration of additional components, such
as semantic information and object priors.Future directions
of research include, but not limited to incorporating incre-
mental differentiable slam using the synthetic data generated
using Carla with particle filters.

https://github.com/RaghavM 1 1/Diff-Slam
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